ABCD Parameter MATLAB Code
len=300; res=0.016; ind=0.97e-03; cap=0.0115e-06;f=60.0;
kvll=500; mva3=1000;pf=0.8; flag=2;
% flag =1 for leading, flag=2 for lagging
clc;
mat=[]; re=[];
% line model lm=1 for short, 2 for medium -pi, 3 for medium-T
lm=input(‘Enter line model, 1 for short, 2 for medium pi, 3 for medium T :’);
l=ind*len;
c=cap*len;
r=res*len;
xl=2*pi*f*l;
z=complex(r,xl);
y=complex(0.0,(2*pi*f*c));
if lm==1
mat=[1.0 z;
0.0 1.0];
elseif lm==2
mat=[(1+(y*z/2)) z;
(y*(1+y*z/4)) (1+(y*z/2))];
else
mat=[(1+(y*z/2)) z*(1+y*z/4);
y (1+(y*z/2))];
end
xx=mat(1,1)*mat(2,2)-mat(1,2)*mat(2,1);
disp(‘ABCD CONSTANTS’);
disp(‘ ‘);
disp(‘ ‘);
disp(mat);
disp(‘ ‘);
disp(‘ ‘);
disp(‘AD-BC = ‘);
disp(xx);
vrm=1000*kvll/sqrt(3);
vr=complex(vrm,0.0);
irm=1000*mva3/(sqrt(3)*kvll);
sinpi=sin(acos(pf));
if(flag==1)
ir=irm*complex(pf,sinpi);
else
ir=irm*complex(pf,-sinpi);
end
re=[vr;ir];
se=mat*re;
vskv=sqrt(3)*abs(se(1))/1000;
iska=abs(se(2))/1000;
pr=3*real(re(1)*conj(re(2)))*1e-06;
ps=3*real(se(1)*conj(se(2)))*1e-06;
th1=angle(se(1));
th2=angle(se(2));
pfs=cos(th1-th2);
effn=100*pr/ps;
vr0=abs(se(1))/abs(mat(1,1));
reg=100*(vr0-vrm)/vrm;
cal=[vskv iska pr ps pfs effn reg];
disp(‘ ‘);
disp(‘ ‘);
disp(‘ Vs(L-L KV) Is(KA) Pr(MW)Ps(MW) PF(Send)%Effn %Reg ‘);
disp(‘ ‘);
disp(‘ ‘);
disp(cal);
Output:
Enter line model, 1 for short, 2 for medium pi, 3 for medium T :1
ABCD CONSTANTS
1.0e+02 *
0.0100 + 0.0000i 0.0480 + 1.0970i
0.0000 + 0.0000i 0.0100 + 0.0000i
AD-BC =
1
Vs(L-L KV) Is(KA) Pr(MW) Ps(MW) PF(Send) %Effn %Reg
661.4814 1.1547 800.0000 819.2000 0.6192 97.6563 32.2963